Continuity of the Strong Unicity Constant on $C(X)$ for Changing X

M. W. Bartelt
Department of Mathematics, Christopher Newport College, Newport News, Virginia 23606

AND

M. S. Henry
Department of Mathematical Sciences, Montana State University, Bozeman, Montana 59717
Communicated by Richard S. Varga

Received August 4, 1978

1. Introduction

Let $C(X)$ denote the set of real valued continuous functions on the compact metric space X and let $M \subseteq C(X)$ denote a Haar subspace of dimension K. For any compact metric subspace Y of X, let $\|\cdot\|_{Y}$ denote the uniform norm on Y and let $B_{Y}(f)$ denote the best uniform approximation to f on Y from M. Then the well-known strong unicity theorem, introduced for uniform approximation in [12], says that for any subset Y of X there exists a constant $\gamma=$ $\gamma(Y, M, f)$ such that for all m in M,

$$
\begin{equation*}
\|f-m\|_{Y} \geqslant\left\|f-B_{Y}(f)\right\|_{Y}+\gamma\left\|B_{Y}(f)-m\right\|_{Y} \tag{1.1}
\end{equation*}
$$

As usual, we take γ to be the largest number for which (1.1) is valid for all $m \in M$.

Several recent papers have studied this $\gamma=\gamma(Y, M, f)$ (see references). Methods of computing γ were given in [2] and [4]. In [1], the continuity properties of γ as a function of f were studied and in [2] a uniform strong unicity constant was found for all f (assuming X was finite). The behavior of γ as a function of M has been considered in [8], [13], and [14]. More precisely, $\lim _{n \rightarrow \infty} \gamma\left(Y, M_{n}, f\right)$ was studied where M_{n} was a Haar space of dimension n. Strong unicity on nearby sets was considered in [5], and in [7] the behavior of γ was studied when X was an interval whose length decreases.

The present paper is concerned with the properties of $\gamma(X, M, f)$ as a
function of X. For any two subsets A and B of X, the "density" of A in B (cf. [3]) is,

$$
d(A, B)=\sup _{y \in B} \inf _{x \in A} d(x, y)
$$

We show that under suitable circumstances (see Theorem 1) $\gamma(Y, M, f)$ converges to $\gamma(X, M, f)$ as $d(Y, X)$ converges to zero. The crucial consideration concerns the behavior or number (see Theorem 2) of the extreme points for the best approximations.

The set of extreme points of $f-B_{Y}(f)$ on Y is:

$$
E_{Y}(f)=\left\{x \in Y:\left|f(x)-B_{Y}(f)(x)=\right| f-B_{Y}(f) \|_{Y}\right\}
$$

When $Y=X, E_{X}(f)$ is denoted by $E(f)$. Finally, let π_{K} denote the set of polynomials of degree $\leqslant K$.

2. Computing γ and a Counter Example

Two methods will be used to calculate $\gamma(X, f)$. The first [2] is

$$
\begin{equation*}
\gamma(X, f)=\inf \left\{\max _{x \in E(f)} \operatorname{sgn}\left(f(x)-B_{X}(f)(x)\right) m(x): m \| x=1\right\} \tag{2.1}
\end{equation*}
$$

The second is an observation of M. Henry and J. Roulier [8] based on work of A. Cline [4] in the special case when $E(f)$ has $K+1$ points. In this case let $\left\{x_{k}\right\}_{k=0}^{K}$ be the points in $E(f)$. Then for each $i=0, \ldots, K$, define the function $q_{i} \in M$ which interpolates at K of the extreme points by:

$$
q_{i}\left(x_{k}\right)=\operatorname{sgn}\left(f\left(x_{k}\right)-B_{X}(f)\left(x_{k}\right)\right)
$$

for $k=0,1, \ldots, K$ and $k \neq i$. Then,

$$
\begin{equation*}
\gamma(X, f)=\left(\max _{0 \leqslant i \leqslant K}\left\|q_{i}\right\|_{X}\right)^{-1} \tag{2.2}
\end{equation*}
$$

The following example shows that continuity with respect to density may fail.

Example. Let $X(n), n=4,5, \ldots$, be a sequence of subsets of $X=[0,1]$ given by $X(n)=[1 / n, 1-1 / n]$. Let $M=\pi_{1}$ and let $f \in C[0,1]$ be the piecewise linear function which satisfies $f(0)=f(1 / 2)=f(1)=1$ and $f(1 / 4)=$ $f(3 / 4)=-1$. Then we show that $\lim _{n \rightarrow \infty} d(X(n), X)=0$ but,

$$
\lim _{n \rightarrow x} \gamma(X(n), f) \neq \gamma(X, f)
$$

First observe that $B_{X(n)}(f)=B_{X}(f)=0$ and $E_{n}(f)=\{1 / 4,1 / 2,3 / 4\}$. Thus we can use (2.2) to calculate γ on $X(n)$ and there are three interpolating functions: $q_{0}(x)=-8 x+5, \quad q_{1}(x)=-1, \quad$ and $\quad q_{2}(x)=8 x-3$, with $\left\|q_{0}\right\|_{X(n)}=\left\|q_{2}\right\|_{X(n)}=(5 n-8) / n$ and $\left\|q_{1}\right\|_{X(n)}=1$. Thus $\quad \gamma(X(n), f)=$ $n /(5 n-8)$.

To compute $\gamma(X, f)$ use (2.1). Any m in M with $\|m\|_{X}=1$ satisfies $m(0)=1, m(1)=1, m(0)=-1$ or $m(1)=-1$. For any m in M with $m(0)=1$ or $m(1)=1$, the max in (2.1) will be 1 . If $m(0)=-1$, then by graphing $f(x)$ and $m(x)$ one sees the max clearly occurs when $m(1 / 4) f(1 / 4)=$ $-m(1) f(1)$ and thus $m(x)=8 / 5 x-1$ and the inf in (2.1) for this m will be $3 / 5$. Alternatively one can obtain $3 / 5$ by computing

$$
\begin{aligned}
& \inf _{0 \leqslant a \leqslant 2} \max _{x \in E_{n}(f)}\{f(x) m(x)\} \\
& \quad=\inf _{0 \leqslant a \leqslant 2} \max \{-1,1-a / 4,-1+a / 2,1-3 a / 4, a-1\}
\end{aligned}
$$

where $m(x)=a x-1$. The case $m(1)=-1$ gives the same value as when $m(0)=-1$ by symmetry. Thus $\lim _{n \rightarrow \infty} \gamma(X(n), f)=1 / 5<\gamma(X, f)=3 / 5$.

Remark. Cline (Theorem 3 in [4]) gives a computational procedure to determine some number γ to use in (1.1). This procedure involves computing for each alternating set $A_{\alpha} \subseteq E(f) \subseteq X$ a value,

$$
\gamma\left(A_{\alpha}, f\right)=\inf \left\{\sup _{x \in A_{\alpha}} \operatorname{sgn}\left(f(x)-B_{X}(f)(x)\right) m(x):\|m\|_{X}=1\right\}
$$

utilizing the interpolation process described above (2.2). The largest possible constant arising from this procedure for which (1.1) holds would then be $\sup _{\alpha} \gamma\left(A_{\alpha}, f\right)$. Since $\gamma\left(A_{\alpha}, f\right) \leqslant \gamma(X, f)$ for each $\alpha, \sup _{\alpha} \gamma\left(A_{\alpha}, f\right) \leqslant \gamma(X, f)$. The above example demonstrates that this inequality may in fact be strict. In particular, $E_{n}(f)$ allows five alternating sets, and $\sup _{1 \leqslant 1 \leqslant 5} \gamma\left(A_{i}, f\right)=\frac{1}{5}$.

3. Main Results

The first Theorem shows that $\gamma(X, f)$ depends continuously on X providing the extreme points $E_{X}(f)$ depend continuously on X. The proof is given after a Lemma and a Proposition which asserts that regardless of the behavior of $E_{X}(f), \gamma(X, f)$ is an upper semi-continuous function of X.

Theorem 1. If

$$
\lim _{n \rightarrow \infty} d(X(n), X)=0
$$

and

$$
\lim _{n \rightarrow \infty} d\left(E_{n}(f), E(f)\right)=0
$$

then

$$
\lim _{n \rightarrow \infty} \gamma(X(n), f)=\gamma(X, f)
$$

Proposition. The constant γ satisfies:

$$
\lim _{d(Y, X)>0} \sup \gamma(Y, f) \leqslant \gamma(X, f)
$$

Proof. The first part of the proof consists of showing that for any $g \in C(X)$,

$$
\begin{equation*}
\lim _{d(X, X) \geqslant 0}\left\|g-\left.B_{Y}(f)\right|_{Y}=\right\| g-\left.B_{X}(f)\right|_{X}, \tag{3.1}
\end{equation*}
$$

It is well known (cf. [3]) that as $d(Y, X) \rightarrow 0, B_{Y}(f)$ converges uniformly to $B_{X}(f)$ on X and thus,

$$
\begin{align*}
\lim _{d(Y, X) \rightarrow 0} \sup \| g-\left.B_{Y}(f)\right|_{Y} & \leqslant \lim _{d(Y, X) \rightarrow 0} \sup \| g-B_{Y}(f) \mid X \\
& =\lim _{d(Y, X) \rightarrow 0}\left\|g-B_{Y}(f)\right\|_{X X} \\
& =\left\|g-B_{X}(f)\right\|_{X} \tag{3.2}
\end{align*}
$$

Let $\epsilon=0$ be given. We show that,

$$
\lim _{d(Y, X)>0} \inf \left\|g-B_{Y}(f)\right\|_{Y} \geqslant g-B_{X}(f) \|_{X}-\epsilon
$$

Since $\left\{B_{Y}(f)\right\}_{Y \subseteq X}$ is equicontinuous on X for $d(Y, X)$ small enough, there exists a $\delta>0$ such that if $|x-y|<\delta$ and $d(Y, X)<\delta$, then both the following occur:

$$
\left|B_{Y}(f)(x)-B_{Y}(f)(y)\right|<\epsilon / 2
$$

for all $B_{Y}(f)$ with $d(Y, X)<\delta$ and,

$$
|g(x)-g(y)|<\epsilon / 2 \quad \text { for } \quad x, y, \in X .
$$

Thus for x in X,

$$
\begin{aligned}
\left|g(x)-B_{Y}(f)(x)\right| & \leqslant\left|g(y)-B_{Y}(f)(y)\right|+|g(x)-g(y)|+\left|B_{Y}(f)(y)-B_{Y}(f)(x)\right| \\
& \leqslant \| g-\left.B_{Y}(f)\right|_{Y}+\epsilon .
\end{aligned}
$$

Thus,

$$
\left\|g-B_{Y}(f)\right\|_{X} \leqslant\left\|g-B_{Y}(f)\right\|_{Y} \mid \epsilon
$$

and for any $\epsilon>0$,

$$
\begin{align*}
\left\|g-B_{X}(f)\right\|_{X}-\epsilon & =\lim _{d(Y, X) \rightarrow 0} \inf \left\|g-B_{Y}(f)\right\|_{X}-\epsilon \\
& \leqslant \lim _{d(Y, X) \rightarrow 0} \inf \left\|g-B_{Y}(f)\right\|_{Y} \tag{3.3}
\end{align*}
$$

Combining (3.2) and (3.3) yields (3.1).
Now for the second part of the proof, suppose that the conclusion is false and that therefore there are sets $\{Y(n)\}$ such that $d(Y(n), X) \rightarrow 0$ and $\lim _{n \rightarrow \infty}$ sup $\gamma(Y(n), f)>\gamma(X, f)$. Using an appropriate subsequence (or subnet) of $\{Y(n)\}$ assume that $\gamma(Y(n), f) \geqslant \gamma(X, f)+\epsilon$ for all $n>N$. Fix any m in M. Then by definition of strong unicity on $Y(n)$,

$$
\|f-m\|_{Y(n)} \geqslant\left\|f-B_{Y(n)}(f)\right\|_{Y(n)}+\gamma(Y(n), f)\left\|m-B_{Y(n)}(f)\right\|_{Y(n)}
$$

Letting $n \rightarrow \infty$ in each term and using the first part of the proof we find,

$$
\|f-m\|_{X} \geqslant\left\|f-B_{X}(f)\right\|_{X}+(\gamma(X, f)+\epsilon)\left\|m-B_{X}(f)\right\|_{X}
$$

which contradicts the fact that $\gamma(X, f)$ is the largest number for which (1.1) is valid for all $m \in M$.

Lemma 1. Let $X(n) \subseteq X, n=1,2, \ldots$. Assume for each $n=1,2, \ldots$, that $m_{n} \in M$ and $\left\|m_{n}\right\|_{X(n)}=1$. If $\lim _{n \rightarrow \infty} d(X(n), X)=0$, then

$$
\lim _{n \rightarrow \infty}\left\{\left\|m_{n}\right\|_{X}-\left\|m_{n}\right\|_{X(n)}\right\}=0
$$

Proof. There exist constants (Lemma 1, p. 85 in [3]) A and δ_{1} such that if $Y \subseteq X$ and $d(Y, X)<\delta_{1}$, then for every m in $M,\|m\|_{X} \leqslant A\|m\|_{Y}$. Thus when $d(X(n), X)<\delta_{1}$ for $n>N$, we have $\left\|m_{n}\right\|_{X} \leqslant A$. Under these circumstances (Lemma 1, p. 16 [10]) there exists a constant B such that if $m_{n}=$ $\sum_{i=1}^{K} a_{i}^{(n)} \phi_{i}$, where M is spanned by $\left\{\phi_{1}, \ldots, \phi_{k}\right\}$, then $\left|a_{i}^{(n)}\right| \leqslant B$ for $i=$ $1,2, \ldots, K$ and all $n>N$. Given $\epsilon>0$, there is a $\delta>0$ such that

$$
\left|\phi_{i}(x)-\phi_{i}(y)\right|<\epsilon / B K, \quad i=1,2, \ldots, K
$$

whenever $|x-y|<\delta$ and $x, y \in X$. Let $\delta<\delta_{1}$ and assume $d(X(n), X)<\delta$ if $n>N$. Let $\left\|m_{n}\right\|_{X}=\left|m_{n}\left(\bar{x}_{n}\right)\right|$ for some point $\bar{x}_{n} \in X$. Then for $n>N$,

$$
\begin{align*}
\left\|m_{n}\right\|_{X}-\left\|m_{n}\right\|_{X(n)} & \leqslant\left|\sum_{i=1}^{K} a_{i}^{(n)} \phi\left(\bar{x}_{n}\right)\right|-\left|\sum_{i=1}^{K} a_{i}^{(n)} \phi_{i}(x)\right| \\
& \leqslant \sum_{i=1}^{K}\left|a_{i}^{(n)}\right|\left|\phi_{i}\left(\bar{x}_{n}\right)-\phi_{i}(x)\right| \tag{3.4}
\end{align*}
$$

for any $x \in X(n)$. For any $n \geq N$, there is some $x \in X(n)$ with $\bar{x}_{n} \cdots x<\delta$. Thus (3.4) is less than ϵ.

Proof of Theorem 1. By the Proposition it suffices to show that,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \inf \gamma(X(n), f) \geqslant \gamma(X, f) \tag{3.5}
\end{equation*}
$$

Let $\quad R_{n}(x)=f(x)-B_{X(n)}(f)(x)$ and $R(x)=f(x)-B_{X}(f)(x)$. Assume without loss of generality that $\|\left. f\right|_{X}==1$ and $B_{X}(f)=0$. Then by (2.1) there exists for each $n=1,2, \ldots$, a function m_{n} in M such that $m_{n} x(n)=1$ and,

$$
-\gamma(X(n), f)+\max _{x \in E_{n}(f)} \operatorname{sgn}\left(R_{n}(x)\right) m_{n}(x)<\epsilon / 4
$$

Then for any n,

$$
\begin{align*}
& \gamma(X, f)-\gamma(X(n), f) \leqslant \max _{x \in E(f)} f(x) m_{n}(x)\left(\left\|m_{n}\right\| x\right)^{-1} \\
&-\max _{x \in E_{n}(f)} \operatorname{sgn}\left(R_{n}(x)\right) m_{n}(x) \\
&+\max _{x \in E_{n}(f)} \operatorname{sgn}\left(R_{n}(x)\right) m_{n}(x)-\gamma(X(n), f) \\
& \leqslant \epsilon / 4+\max _{x \in E(f)} f(x) m_{n}(x)\left(\left\|m_{n}\right\| x\right)^{-1} \\
&-\max _{x \in E_{n}(f)} \operatorname{sgn}\left(R_{n}(x)\right) m_{n}(x) \tag{3.6}
\end{align*}
$$

For $n=1,2, \ldots$, let x_{n}^{\prime} be a point where $\max _{x \in E(f)} f(x) m_{n}(x)\left(\left\|m_{n}\right\| x\right)^{-1}$ is achieved. Then for any n and $x \in E_{n}(f)$, (3.6) implies that

$$
\begin{align*}
\gamma(X, f) & -\gamma(X(n), f) \\
\leqslant & \epsilon / 4+f\left(x_{n}^{\prime}\right) m_{n}\left(x_{n}^{\prime}\right)\left(\left\|m_{n}\right\|_{X}\right)^{-1}-\operatorname{sgn}\left(R_{n}(x)\right) m_{n}(x) \\
\leqslant & \epsilon / 4+\left|f\left(x_{n}^{\prime}\right) m_{n}\left(x_{n}^{\prime}\right)\left(\left\|m_{n}\right\|_{X}\right)^{-1}-f(x) m_{n}\left(x_{n}^{\prime}\right)\left(\| m_{n} \mid x\right)^{-1}\right| \\
& +\left|f(x) m_{n}\left(x_{n}^{\prime}\right)\left(\left\|m_{n}\right\|_{X}\right)^{-1}-\operatorname{sgn}\left(R_{n}(x)\right) m_{n}\left(x_{n}^{\prime}\right)\left(\left\|m_{n}\right\|_{x}\right)^{-1}\right| \\
& +\left|\operatorname{sgn}\left(R_{n}(x)\right) m_{n}\left(x_{n}^{\prime}\right)\left(\left\|m_{n}\right\|_{X}\right)^{-1}-\operatorname{sgn}\left(R_{n}(x)\right) m_{n}(x)\right| \\
\leqslant & \epsilon / 4+\left|f\left(x_{n}^{\prime}\right)-f(x)\right|+\left|f(x)-\operatorname{sgn}\left(R_{n}(x)\right)\right| \\
& +\left|m_{n}\left(x_{n}^{\prime}\right)\left(\left\|m_{n}\right\| x\right)^{-1}-m_{n}(x)\right| . \tag{3.7}
\end{align*}
$$

Since $x \in E_{n}(f)$, it can be shown that

$$
f(x)-\operatorname{sgn} R_{n}(x)=f(x)-\left(f(x)-B_{X(n)}(f)(x)\right)\left(\left\|f-B_{X(n)}(f)\right\|_{x(i)}\right)^{1}
$$

converges to zero as $n \rightarrow+\infty$ because by (3.1), $\left\|f-B_{X(n)}(f)\right\|_{X(n)}$ converges to $\left\|f-B_{X}(f)\right\|_{X}=1$ and $B_{X(n)}(f)$ converges to $B_{X}(f)=0$ uniformly on X. Thus for all n sufficiently large and any $x \in E_{n}(f)$, (3.7) implies that

$$
\begin{align*}
& \gamma(X, f)-\gamma(X(n), f) \\
& \quad \leqslant \epsilon / 2+\left|f\left(x_{n}^{\prime}\right)-f(x)\right|+\left[\frac{m_{n}\left(x_{n}^{\prime}\right)}{\left\|m_{n}\right\|_{X}}-\frac{m_{n}(x)}{\left\|m_{n}\right\|_{X(n)}}\right] \tag{3.8}
\end{align*}
$$

Recall $\left\|m_{n}\right\|_{X(n)}=1$. By Lemma 1, there is an N so that if $n>N$, then $\left\|m_{n}\right\|_{x}-\left\|m_{n}\right\|_{X(n)}<\epsilon / 8$. For any fixed $n>N$, there is an $x \in E_{n}(f)$ with $\left|f\left(x_{n}^{\prime}\right)-f(x)\right|<\epsilon / 4$ and also $\left|m_{n}\left(x_{n}^{\prime}\right)-m_{n}(x)\right|<\epsilon / 8$. Hence for $n>N$, (3.8) is less than ϵ. This shows that for any $\epsilon>0$, there is an N such that if $n>N$, then $\gamma(X, f)-\gamma(X(n), f)<\epsilon$. Hence (3.5) follows.

Theorem 2. Assume that $f \notin M, E(f)$ has exactly $1+\operatorname{dim} M$ points and $\lim _{n \rightarrow \infty} d(X(n), X)=0$. Then,

$$
\lim _{n \rightarrow \infty} \gamma(X(n), f)=\gamma(X, f)
$$

Notice that if X has at least $K+2$ points and $E(f)$ has exactly $1+\operatorname{dim} M=$ $K+1$ points, then $f \notin M$ follows. The proof consists of applying the following interesting Lemma to observe that $\lim _{n \rightarrow \infty} d\left(E_{n}(f), E(f)\right)=0$ and then applying Theorem 1 . Observe that although $E(f)$ in the Lemma has just $K+1$ points, $E_{n}(f)$ might even have infinitely many.

Lemma 2. Assume $f \notin M$ and $E(f)$ has $K+1$ points and for each n, let $A_{n}=\left\{x_{i, n}\right\}_{i=0}^{K}$ be some alternation set for $f-B_{X(n)}(f)$ on $X(n)$ and $A=\left\{x_{i}\right\}_{i=0}^{K}$ be the alternation set for $f-B_{X}(f)$. Then $\lim _{n \rightarrow \infty} A_{n}=A$.

Proof. We show that $\lim _{n \rightarrow \infty} x_{i n}=x_{i}$. We have $A_{n} \subseteq E_{n}(f) \subseteq X(n)$ and $x_{0 n}<x_{1 n}<\cdots<x_{K n}$. For each $i=0,1, \ldots, K,\left\{x_{i n}\right\}_{n}$ contains a convergent subsequence, say $\left\{x_{i n(j)}\right\}$, converging to \bar{x}_{i}, and clearly $\bar{x}_{i} \leqslant \bar{x}_{i+1}$. First we show $\bar{x}_{i}<\bar{x}_{i+1}$. Suppose to the contrary that for some $i, \bar{x}_{i}=\bar{x}_{i+1}$. Let $R_{j}=f-B_{X(n(j)}(f)$. Then $\left\|B_{X(n(j))}(f)-B(f)\right\|_{X} \rightarrow 0$ implies $\left\|R_{j}-R\right\|_{X} \rightarrow$ 0 . Let j be large enough so that,

$$
\left|R\left(x_{i, n(j)}\right)-R\left(x_{i+1, n(j)}\right)\right|<\|R\|_{X} .
$$

This is possible because $x_{i, n(j)} \rightarrow \bar{x}_{i}=\bar{x}_{i+1}, x_{i+1, n(j)} \rightarrow \bar{x}_{i+1}$ and $\|R\|_{X}>0$. Also select j large enough to insure that,

$$
\left\|R-R_{j}\right\|_{X}<(1 / 8)\|R\|_{X} \quad \text { and } \quad\|R\|_{X(n(j))}>(3 / 4)\|R\|_{X}
$$

Then,

$$
\begin{aligned}
\|R\|_{X} & >\left|R\left(x_{i, n(j)}\right)-R\left(x_{i+1, n(j)}\right)\right| \\
\geqslant & \left|R_{j}\left(x_{i, n(j)}\right)-R_{j}\left(x_{i+1, n(j)}\right)\right| \\
& \quad-\mid R\left(x_{i, n(j)}-R_{j}\left(x_{i, n(j)}\right)\left|-\left|R\left(x_{i+1, n(j)}\right)-R_{j}\left(x_{i+1, n(j)}\right)\right|\right.\right. \\
\geqslant & \left.2 \| R_{j} \mid X_{X(n(j)}\right)-2\left\|R-R_{j}\right\|_{X} .
\end{aligned}
$$

But $\left\|R_{j}\right\|_{X(n(j))} \geqslant\|R\|_{X(n(j))}-\left\|R-R_{j}\right\|_{X}$ and therefore,

$$
\|R\|_{X} \geqslant 2\|R\|_{X(n(j))}-4\left\|R-R_{j}\right\|_{X}
$$

Consequently,

$$
\|R\|_{X}>3 / 2\|R\|_{X}-4 / 8\|R\|_{X}=\|R\|_{X}
$$

a contradiction. Thus,

$$
\bar{x}_{0}<\bar{x}_{1}<\cdots<\bar{x}_{K}
$$

By (3.1) we have $\lim _{j \rightarrow \infty}\left\|R_{j}\right\|_{X(n(j))}=\|R\|_{X}$ and thus,

$$
\lim _{i \rightarrow \infty}\left|f\left(x_{i, n(j)}\right)-B_{X(n(j))}(f)\left(x_{i, n(j)}\right)\right|=\|R\|_{X}
$$

which implies,

$$
\left|f\left(\bar{x}_{i}\right)-B_{X}(f)\left(\bar{x}_{i}\right)\right|=\|R\|_{X} \quad i=0, \ldots, K
$$

Hence $\left\{\bar{x}_{0}, \ldots, \bar{x}_{K}\right\}=E(f)=\left\{x_{0}, \ldots, x_{K}\right\}$. Since this is true for any subsequence $\left\{x_{i, n(j)}\right\}$ it follows that the sequence $\left\{x_{i, n}\right\}_{n=1}^{\infty}$ itself converges to x_{i} and consequently A_{n} converges to A.

It is of interest to observe that in the above proof for each i,

$$
\operatorname{sgn}\left(f\left(x_{i, n(j)}\right)-B_{X(n(j))}(f)\left(x_{i, n(j)}\right)=\operatorname{sgn} R\left(x_{i}\right)\right.
$$

for all but finitely many j. This follows because,

$$
\lim _{i \rightarrow \infty} f\left(x_{i, n(j)}\right)-B_{X(n(j))}(f)\left(x_{i, n(j)}\right)=f\left(x_{i}\right)-B_{X}(f)\left(x_{i}\right)
$$

The previous two results can be applied to the following example where in particular $E_{n}(f)$ is larger than $E(f)$.

Example 2. Let $X=[0,1], \quad X_{n}=[0,1 / 2-1 / n] \cup[1 / 2+1 / n, 1]$, $f(x)=4(x-1 / 2)^{2}$ and $M=\pi_{1}$. Then $B_{X}(f)(x)=1 / 2$ and $E(f)=\{0,1 / 2,1\}$ and $E(f)$ has $K+1$ points. By the previous two results, $\lim _{n \rightarrow \infty} \gamma(X(n), f)=$ $\gamma(X, f)$ and $\lim _{n \rightarrow \infty} d\left(E_{n}(f), E(f)\right)=0$. Here $E_{n}(f)=\{0,1 / 2-1 / n, 1 / 2+$ $1 / n, 1\}$ and $B_{X(n)}(f)(x)=1 / 2+2 / n^{2}$. The alternation sets on $X(n)$ are $A_{1 n}=$
$\{0,1 / 2-1 / n, 1\}$ and $A_{2 n}=\{0,1 / 2+1 / n, 1\}$ and these as predicted converge to $E(f)$. Using (2.2) and (2.1) respectively one obtains $\gamma(X, f)=1 / 3$ and $\gamma(X(n), f)=(n+2) /(3 n-2)$.

Corollary. Let $I_{n} \subseteq I, n=1,2, \ldots$, be intervals satisfying $\lim _{n \rightarrow \infty} d\left(I_{n}, I\right)=$ 0 . Let $M=\pi_{K}$, and assume $f^{(K+1)}(x) \neq 0$ on I. Then,

$$
\lim _{n \rightarrow \infty} \gamma\left(I_{n}, f\right)=\gamma(I, f)
$$

Examples. Let $I=[-1,1], I_{n}=[-1+1 / n, 1-1 / n], f(x)=e^{x}$ and $f_{a}(x)=1 /(a-x)$ for $a \geqslant 2$. Then the Corollary shows that $\gamma\left(I_{n}, f\right) \rightarrow$ $\gamma(I, f)$ and $\gamma\left(I_{n}, f_{a}\right) \rightarrow \gamma\left(I, f_{a}\right)$.

References

1. M. W. Bartelt, On Lipschitz conditions, strong unicity and a theorem of a A. K. Cline, J. Approximation Theory 14 (1975), 245-250.
2. M. W. Bartelt and H. W. McLaughlin, Characterizations of strong unicity in approximation theory, J. Approximation Theory 9 (1973), 255-266.
3. E. W. Cheney, "Introduction to Approximation Theory," McGraw-Hill, New York, 1966.
4. A. K. Cline, Lipschitz conditions on uniform approximation operators, J. Approximation Theory 8 (1973), 160-172.
5. C. B. Dunham, Nearby linear Chebyshev approximation, Aequationes Math. 16 (1977), 129-135.
6. M. H. Gutknecht, Non-strong uniqueness in real and complex Chebyshev approximation, J. Approximation Theory 23 (1978), 204-213.
7. M. S. Henry and J. A. Roulier, Uniform Lipschitz constants on small intervals, J. Approximation Theory 21 (1977), 224-235.
8. M. S. Henry and J. A. Rouler, Lipschitz and strong unicity constants for changing dimension, J. Approximation Theory 22 (1978), 85-94.
9. M. S. Henry and D. Schmidt, Continuity theorems for the product approximation operator, in "Theory of Approximation with Application" (A. G. Law and B. N. Sahney, Eds.), pp. 24-42, Academic Press, New York, 1976.
10. G. G. Lorentz, "Approximation of Functions," Holt, Rinehart \& Winston, New York, 1966.
11. H. W. McLaughlin and K. B. Somers, Another characterization of Haar subspaces, J. Approximation Theory 14 (1975), 93-102.
12. D. J. Newman and H. S. Shapiro, Some theorems on Čebyšev approximation, Duke Math. J. 30 (1963), 673-681.
13. S. J. Poreda, Counter examples in best approximation, Proc. Amer. Math. Soc. 56 (1976), 167-171.
14. D. Schmidt, On an unboundedness conjecture for strong unicity constants, J. Approximation Theory 24 (1978), 216-223.
