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1. INTRODUCTION

Let C(X) denote the set of real valued continuous functions on the compact
metric space X and let M ~ C(X) denote a Haar subspace of dimension K.
For any compact metric subspace Y of X, let II . Ily denote the uniform norm
on Yand let By(f) denote the best uniform approximation to f on Yfrom M.
Then the well-known strong unicity theorem, introduced for uniform approxi
mation in [12], says that for any subset Y of X there exists a constant y =

y( Y, M,1) such that for all m in M,

Ilf - m !Iy ~ Ilf - By(f)liy +- y !I By(f) - m Ily . (Ll)

As usual, we take y to be the largest number for which (1.1) is valid for all
mEM..

Several recent papers have studied this y = y( Y, M,1) (see references).
Methods of computing y were given in [2] and [4]. In [1], the continuity
properties of y as a function off were studied and in [2] a uniform strong
unicity constant was found for allf(assuming X was finite). The behavior of y
as a function of M has been considered in [8], [13], and [14]. More precisely,
limn->oo y( Y, M n ,1) was studied where M n was a Haar space of dimension n.
Strong unicity on nearby sets was considered in [5], and in [7] the behavior of
y was studied when X was an interval whose length decreases.

The present paper is concerned with the properties of y(X, M,1) as a
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function of X. For any two subsets A and B of X, the "density" of A in B
(cf. [3]) is,

dCA, B) =cc sup inf d(x, y).
)'EB XEA

We show that under suitable circumstances (see Theorem 1) AY, M,f)
converges to y(X, M, f) as d( Y, X) converges to zero. The crucial considera
tion concerns the behavior or number (see Theorem 2) of the extreme points
for the best approximations.

The set of extreme points of/ - By(f) on Y is:

Ey(f) = {x EO Y: ! j(x) - By(f)(x): =1/ - By(f)lly}·

When Y = X, Ex(f) is denoted by E(f). Finally, let TTK denote the set of
polynomials of degree ,,::; K.

2. COMPUTING "I AND A COUNTER EXAMPLE

Two methods will be used to calculate y(X, f). The first [2] is

y(X,J) = inf{max sgn(f(x) - Bx(f)(x» I1I(X): m li x = 11. (2.1)
rt~n " . .

The second is an observation of M. Henry and J. Roulier [8] based on work of
A. Cline [4] in the special case when E(f) has K + 1 points. In this case let
{xk}f~o be the points in E(f). Then for each i == 0"00' K, define the function
qi E M which interpolates at K of the extreme points by:

for k = 0, 1, ... , K and k ,;L i. Then,

y(X, J) = (o~~'\ Ii q, i!x)-J (2.2)

The following example shows that continuity with respect to density may
fail.

EXAMPLE. Let X(n), n = 4, 5'00" be a sequence of subsets of X = [0, 1]
given by X(n) = [lIn, 1 - lin]. Let M = 7T1 and let/EO e[O, 1] be the piece
wise linear function which satisfiesj(O) =j(1/2) =j(1) = 1 andj(1/4) =
j(3/4) = -1. Then we show that limn~dO d(X(n), X) = °but,

lim y(X(n), J) ¥ y(X, J).
n->::C



STRONG UNICITY CONSTANTS 89

First observe that Bx(n)(f) = Bx(f) = 0 and En(f) = {I/4, 1/2, 3/4}.
Thus we can use (2.2) to calculate y on X(n) and there are three interpolating
functions: qo(x) = -8x + 5, ql(X) = -1, and qz{x) = 8x - 3, with
II qo Ilx(,,) = II q2 flx(,,) = (5n - 8)/n and II ql Ilx(n) = 1. Thus y(X(n), f) =
n/(5n -- 8).

To compute y(X,j) use (2.1). Any m in M with II m fix = 1 satisfies
m(O) = I, m(l) = 1, m(O) = -lor m(I) = -1. For any m in M with
m(O) = 1 or m(I) = 1, the max in (2.1) will be 1. If m(O) = -1, then by
graphingj(x) and m(x) one sees the max clearly occurs when m(1/4)j(I/4) =

-m(l)f(1) and thus m(x) = 8/5x - 1 and the infin (2.1) for this m will be
3/5. Alternatively one can obtain 3/5 by computing

~~ inf max{-J, J - a/4, -1 + a/2, 1 - 3a/4, a - I}
O"Ca~2

where m(x) = ax - 1. The case m(l) = -J gives the same value as when
m(O) ~= -1 by symmetry. Thus limn~oo y(X(n),j) = J/5 < y(X, f) = 3/5.

Remark. Cline (Theorem 3 in [4]) gives a computational procedure to
determine some number y to use in (1.1). This procedure involves computing
for each alternating set A~ ( E(f) ( X a value,

y(A~, f) = inf{sup sgn(f(x) - Bx(f)(x)) m(x): II m Ilx = 1]
XEAa:

utilizing the interpolation process described above (2.2). The largest possible
constant arising from this procedure for which (J.1) holds would then be
sup~ y(A~ ,1). Since y(A" ,f) :(; y(X, f) for each (x, sup" y(A" ,f) :(; y(X, f).
The above example demonstrates that this inequality may in fact be strict. In
particular, E,,(f) allows five alternating sets, and SUP1(i(5 y(A; , f) = i.

3. MAIN RESULTS

The first Theorem shows that y(X, f) depends continuously on X providing
the extreme points EAf) depend continuously on X. The proof is given after
a Lemma and a Proposition which asserts that regardless of the behavior of
EAf), y(X,f) is an upper semi-continuous function of X.

THEOREM 1. If
lim d(X(n), X) = 0
fl--) "x'

and

lim d(En(f), E(f)) = 0,
n--')OCJ
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lim y(X(n),1) = y(X, 1).
n-)rfJ

PROPOSITIO:-.r. The constant y satisfies:

lim sup y( Y, 1) < y(X, f).
d(Y,X)-,O

Proof The first part of the proof consists of showing that for any g e C(X),

11m Ii g - By(f)ly = II g - Bx(f)llx,
d(Y,X) ,0

(3.1 )

It is well known (cf. [3]) that as d( Y, X) -->- 0, By(f) converges uniformly to
Bx(f) on X and thus,

lim sup II g - By(f)ly < lim sup ii g - By(f)lx
~~~~ ~~~~

- lim 'I a - B (f)" --- d( y,X)->O I ,., Y I,X

g - Bx(f)j,x

Let 10 -- 0 be given. We show that,

lim inf II g - By(f)lly? g - Bx(f):lx - E.
d(y,X)·O

(3.2)

Since {By(f)hcx is equicontinuous on X for d(Y, X) small enough, there
exists a 8 > O-such that if 1 x - y I < 8 and dey, X) < 8, then both the
following occur:

! By(f)(x) - By(f)(y)1 < E/2

for all By(f) with d( Y, X) < 8 and,

I g(x) - g(Y)1 < 10/2

Thus for x in X,

for x, y, e X.

I g(x)-By(f)(x) I ,( I g(y)-By(f)(y)j + I g(x)-g(y) I + ! By(f)(y)-By(f)(x)1

< II g - By(f)lly + E.

Thus,

II g - By(f)llx < II g - By(f)ly E
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and for any E > 0,

II g - Bx(f)llx - E = lim inf II g - By(f)llx - E
d(y,X)->O

~ hm inf II g - By(f)lly
d(Y,X)->O

91

(3.3)

Combining (3.2) and (3.3) yields (3.1).
Now for the second part of the proof, suppose that the conclusion is false

and that therefore there are sets {Y(n)} such that d( Yen), X) -+ °and lim,......,
sup y( Yen), f) > y(X,j). Using an appropriate subsequence (or subnet) of
{Y(n)} assume that y(Y(n), f) ? y(X, f) + E for all n > N. Fix any m in
M. Then by definition of strong unicity on Y(n) ,

Ilf - m IIY(n) ? Ilf - BY(n)(f)IIY(n) + y(Y(n),j)llm - BY(n)(f)IIY(n)

Letting n -+ 00 in each term and using the first part of the proof we find,

Ilf - m Ilx ? Ilf - Bx(f)llx + (y(X,j) + E)II m - BxCf)llx

which contradicts the fact that y(X,j) is the largest number for which (l.l) is
valid for all m E M.

LEMMA I. Let X(n) ~ X, n = 1, 2,.... Assume for each n = I, 2, ... , that
mn EM and II mn Ilx(n) = l.lflimn->oo d(X(n), X) = 0, then

lim {II mn Ilx - II mn IIX(n)} = °n->oo

Proof There exist constants (Lemma I, p. 85 in [3]) A and 01such that if
Y ~ X and d( Y, X) < 01 , then for every m in M, II m Ilx ~ A II m lIy. Thus
when d(X(n), X) < 01 for n > N, we have II m n Ilx ~ A. Under these circum
stances (Lemma I, p. 16 [10]) there exists a constant B such that if mn =

L.::1 a:in)epi, where M is spanned by {ep1 ,... , epiC}, then I a}n) I ~ B for i =
I, 2, ... " K and all n > N. Given E > 0, there is a 0 > °such that

I eplx) - epi(Y)1 < E/BK, i = 1,2,... , K

whenever I x - Y I < Dand x, Y E X. Let D< 01 and assume d(X(n), X) < D
if n > N. Let II mn Ilx = Imixn ) I for some point xn E X. Then for n > N.

K K

II mn Ilx - II mn IIX(n) ~ IL a~n)ep(Xn)I-1 L a~n)ep;(x)1
2.=1 t=1

K

~ L I a~n) I I epi(Xn) - epi(X) I (3.4)
i=1
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for any x E X(n). For any n N, there is some xc X(nl with .x" -- x i).

Thus (3.4) is less than E.

Proof of Theorem I. By the Proposition it suffIces to show that,

lim infy(X(n),f) ;;~ y(X,fl (3.5)
/l-'X

Let Rn(x) I(x) - Bx(n)(f)(x) and R(x) I(x) --- BAf)(x). Assume
without loss of generality that !Iflix == I and Bx(f) =, O. Then by (2.1)
there exists for each n == 1, 2, ... , a function Inn in M such that I In" x(,,) = I
and.

-y(X(n). f) -+- max sgn(Rn(x» I1l r,(x) < E/4.
XEEn(f)

Then for any n,

y(X, f) - y(X(n), f) ~ flltrJ/(X) I11n(x)(I! IJ1 n !IX)-1

- max sgn(Rn(x» Inn(X)
XEEn(t)

-+- max sgn(Rn(x» IJ1 n(X) - y(X(n), f)
X EEn (t)

~ E/4 -+- max f(x) nln(x)(li Inn iix)' 1
XEE(f)

- max sgn(Rn(x» mn(x).
XEEn(t)

(3.6)

For n = 1, 2,... , let x~ be a point where maxXEEV>!(X) mn(x)(li nln Ilx)-1 is
achieved. Then for any n and x E En(f), (3.6) implies that

y(X, f) - y(X(n), f)

~ Ej4 -+- f(x~) mn(x~)(11 tnn IIxt1
- sgn(Rn(x» mn(x)

~ Ej4 -+- If(x~) nln(x~)(Ii mn Ilx)-l - f(x) nln(x~)(il tnn Ixt l I

-+- If(x) nln(x~)(11 nln IIxt1
- sgn(Rn(x» IJ1n(x~)(11 nI" i' X )-1

-+- I sgn(RnCx» nlnCx~)(11 nln lix)-l - sgn(Rn(x» nln(x) I

~ E/4 + Ij(x~) - f(x)1 + Il(x) - sgn(Rn(x»!

+ I nln(x~)(11 nln IIxt1
- nln(x)l·

Since x E En(f), it can be shown that

(3.7)

f(x) - sgnRn(x) c__= f(x) - (f(x) - Bx(n)(f)(x»(llf - Bx(n)(f)'lxcnl) I
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converges to zero as n -+ + 00 because by (3.1), Ilf - Bx(n)(f)llx(n) converges
to Ilf -- Bx(f)llx = 1 and Bx(n)(f) converges to BAf) = 0 uniformly on X.
Thus for all n sufficiently large and any x E En(f), (3.7) implies that

y(X, f) - y(X(I1), f)

~ E/2 + If(x~) - f(x) 1+ [1
m
I nnl(nXI~lx) - I mn;x)] (3.8)

i mn IX(n)

Recall II mn Ilx(n) =, 1. By Lemma 1, there is an N so that if 11 > N, then
II mn Ilx - II mn Ilx(n) < E/8. For any fixed 11 > N, there is an x E En(f) with
If(x~) - f(x) 1 < E/4 and also Imn(x~) - mn(x)j < E/8. Hence for 11 > N,
(3.8) is less than E. This shows that for any E > 0, there is an N such that if
n > N, then y(X, f) - y(X(I1), f) < E. Hence (3.5) follows.

THEOREM 2. Assume that ff M, E(f) has exactly I + dim M points and
Iimn~OJ d(X(n), X) = O. Then,

lim y(X(n), f) = y(X, f)
n-)r;t:)

Notice that if Xhas at least K + 2 points and E(f) has exactly 1 + dim M =
K + 1 points, thenflf M follows. The proof consists of applying the follow
ing interesting Lemma to observe that Iimn~OJ d(En(f), E(f» = 0 and then
applying Theorem 1. Observe that although E(f) in the Lemma has just
K + 1 points, EnCf) might even have infinitely many.

LEMMA 2. Assume f If M and E(f) has K + 1 points and for each n, let
An = {Xi.n}~O be some alternation set for f - Bx(n)(f) on X(n) and A = {Xi}~O

be the alternation set for f - Bx(f). Then limn~OJ An = A.

Proof We show that 1imn~OJ Xin = Xi' We have An k En(f) k X(n) and
X on < Xln < ... < XKn . For each i = 0, 1,... , K, {xin}n contains a convergent
subsequence, say {Xin(j)}, converging to Xi, and clearly Xi ~ Xi+1' First
we show Xi < Xi+1 . Suppose to the contrary that for some i, Xi = Xi+1 . Let
Rj =:= f - Bx(n(j))(f). Then II Bx(n(j»(f) - B(f)I!x -+ 0 implies II R j - Rllx-+
O. Let j be large enough so that,

This is possible because Xi,n(j) -+ Xi = XHI , XHl,n(j) -+ Xi+1 and II R Ilx > O.
Also select j large enough to insure that,

[I R - R j Ilx < (1/8) [I R Ilx and I[ R Ilx(n(j)) > (3/4) II R Ilx .
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II R Ilx > I R(Xi,n(j») - R(Xi+1,n(j») I
);: I R;(Xi,n(j») - R;(Xi+1,n(j») I

- I R(xi,n(j) - R;(Xi,n(j») [ - I R(xi+l.n(j») - R;(xi+l.nw)1

);: 211 Rjllx(n(;)) - 211 R - Rj Ilx .

But II Rj lix(n(;) );: II R Ilx(n(;)) - II R - R; Ilx and therefore,

II R Ilx );: 2 II R Ilx(n(;)) - 411 R - R; Ilx .

Consequently,

il R Ilx > 3/211 R Ilx - 4/8 II R Ilx = II R Ilx

a contradiction. Thus,

By (3.1) we have lim;~ro II Rj IIX(n(;» = II R Ilx and thus,

l.im If(Xi,n(j») - BX(n(;))(f)(Xi,n(;)) I = II R Ilx
J---,)(fj

which implies,

If(Xi) - BAf)(Xi)! = II R Ilx i = O, ...,K.

Hence {xu ,... , xK} = E(f) = {xu ,... , XK}' Since this is true for any sub
sequence {Xi,n(j)} it follows that the sequence {Xi.n}~~l itself converges to Xi
and consequently An converges to A.

It is of interest to observe that in the above proof for each i,

for all but finitely many j. This follows because,

The previous two results can be applied to the following example where
in particular En(f) is larger than E(f).

EXAMPLE 2. Let X = [0, 1], Xn = [0, 1/2 - lin] u [1/2 + lin, 1],
f(x) = 4(x - 1/2)2 andM = 7T1 , Then Bx(f)(x) = 1/2andE(f) = {a, 1/2, I}
and E(f) has K + 1 points. By the previous two results, limn~ro y(X(n), f) =

y(X, f) and limn~oo d(En(f), E(f)) = 0. Here En(f) = {a, 1/2 - lin, 1/2 +
lin, I} and Bx(n)(f)(x) = 1/2 + 21n2. The alternation sets on X(n) are A1n =
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{D, 1/2 - lin, I} and A2n = {D, 1/2 + lin, I} and these as predicted converge
to E(f). Using (2.2) and (2.1) respectively one obtains y(X, f) = 1/3 and
y(X(n),j) = (n + 2)/(3n - 2).

COROLLARY. Let In hI, n = 1,2,... , be intervals satisfying limn~oo d(In, I) =

D. Let M = 7TK, and assume flK+ll(X) ~ D on J. Then,

lim y(Jn, j) = y(J, j)
n~oo

EXAMPLES. Let I = [-I, I], In = [-1 + I/n,1 - I/n],j(x) = eX and
fa(x) ,= I/(a - x) for a ~ 2. Then the Corollary shows that y(Jn,j)---+
y(I, f) and y(ln ,fa) ---+ y(l, fa)'
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